Popular Posts

Tuesday, January 12, 2021

The1991 Mercedes-Benz F Research Vehicle


Mercedes-Benz F 100 presented to the public in January 1991 at the North American International Auto Show (NAIAS) in Detroit, USA. The research vehicle featured numerous innovations that were later incorporated into the brand’s series-production vehicles. Shown here as examples: the central screen behind the steering wheel providing information grouped by priorities within the driver’s field of vision. The driver sits in the centre and thus benefits from the highest level of protection. (Photo signature in the Mercedes-Benz archive: A90F1878)


Mercedes-Benz F 100 presented to the public in January 1991 at the North American International Auto Show (NAIAS) in Detroit, USA. The research vehicle featured numerous innovations. Shown here as examples: the rotating/swivelling doors for the driver and sliding doors for passengers. (Photo signature in the Mercedes-Benz archive: D90F1872

Looking back, it is stunning how much of the future the Mercedes-Benz F 100 research vehicle already featured in 1991. Be it operating the phone with buttons on the steering wheel, distance control or the electronic tyre pressure monitoring system as well as many attributes of networked vehicles: what seemed utopian three decades ago forms part of the familiar equipment scope of contemporary passenger cars and commercial vehicles. The research vehicle was presented to the public on 12 January 1991 at the North American International Auto Show (NAIAS) in Detroit, USA, a specialist exhibition that has been held since back in 1907. Engineers and designers fitted more pioneering technology in the F 100 than in any research vehicle ever before. At the same time, however, the list of technology carriers is as long as it is impressive. It all started with the Patent Motor Car by Carl Benz dating back to 1886, the world’s first ever car and also an experimental vehicle. And the list is far from complete with the 2020 “VISION AVTR” concept vehicle.

 Visionary research vehicles surprise the public with the results of in-depth, fundamental research. They are a promise to the future. Time will tell after the unveiling whether or not these promises are kept. A particularly large number of the systems in the Mercedes-Benz F 100 have found their way into series production. These concern passive and active safety, convenient operation and the use of available space. The examples demonstrate how closely researchers back then had their eyes on practical applications with their innovations: operating the phone with buttons on the steering wheel – implemented in 1998 in the S-Class (220 model series); gas-discharge headlights – introduced in 1995 as xenon headlamps in the E-Class (210 model series); phone-based voice recognition – presented in 1996 as LINGUATRONIC in the S-Class (140 model series); electronic tyre pressure monitoring system – unveiled in 1999 in the CL luxury coupĂ© (C 215); KEYLESS-GO – a chip card instead of car keys was an optional extra for the S-Class (220 model series) in 1999; rain sensor – standard in 1996 in the CL CoupĂ© (C 140); sandwich floor – design principle in the A-Class (W 168).

Safety and convenience: The F 100 boasts many details that serve both safety and convenience. With 1991’s level of knowledge, engineers and designers showed foresight in terms of how future statutory safety stipulations would affect vehicle technology and automotive design. During the development of the F 100, they not only took into account findings from accident research, but also from social research. One example being that data showed that a passenger car on average carries only 1.2 to 1.7 people in everyday traffic. This figure has hardly changed over the decades. According to a notification by the German Bundestag (national parliament) – dated 2018 – passenger cars on Germany’s roads carry on average 1.46 occupants on all journeys.

The safe centre: Researchers drew clear conclusions from all findings and considerations. As the driver is always on board, this person can rely on the safest spot in the F 100 and, for this reason, is seated in the centre of the passenger cell. In the majority of conceivable crash situations this is the position in the vehicle bearing the lowest risk. Parts of the vehicle floor and roof also opened together with new rotating/swivelling doors. Consequently, the driver can easily get in and out – in each case on the side of the vehicle facing away from traffic. Two passengers sit offset to the left and right behind the driver. The distance to the instrument panel boosts safety. Occupants’ seats in the rear have been offset from the centre and are protected by sturdy rear wheel arches. Getting in and out of the rear seats is also very easy because the vehicle does not feature B-pillars and the space-saving swivelling/sliding doors open widely. A further convenience feature was well ahead of its time: all four doors are merely moved towards the closed position before servomotors then engage them with the lock.

Networked vehicle: Numerous innovations in the F 100, which likewise would not break through until decades later, meant the vehicle was the pioneer of networked vehicles. A central screen behind the steering wheel providing information grouped by priorities within the driver’s field of vision. For travel along open roads, this may be the speed, but might also be warnings indicating imminent hazards. Numerous electronics components, such as distance control (series launch in the 220 model series S-Class as DISTRONIC, 1998), Active Blind Spot Assist (2007) and the reversing camera (2005 in the 221 model series S-Class), provide data and images for a safe journey. Even automatic lane keeping was already possible three decades ago. Further equipment included a mobile fax machine and a permanently installed personal computer. Solar panels cover two square metres of the roof surface and generate up to 100 watts of output for the power supply.

Sight and light: Gas-discharge headlamps, installed for the very first time at Mercedes-Benz, led to excellent illumination of the road, despite compact headlamp dimensions. The technology was introduced in series production as xenon headlamps. Rear lamps consisting of transparent prism rods mean they can be actuated by a central light source. Depending on the functions, they light up in the corresponding colour. When visibility is clear, the rear wiper is inconspicuously concealed under the roof spoiler and it not only cleans the rear window, but also the rear lights, whenever necessary. The front windscreen wiper moves across the entire width of the windscreen and clears it almost entirely. The sensor behind the windscreen automatically activates the windscreen wiper when it rains.

Power transmission: The front-wheel drive is unusual. The first time this concept was implemented in one of the brand’s series-production vehicles was in the A-Class (W 168) in 1997. A host of engine concepts were taken into consideration as the drivetrain of the F 100, including a combustion engine powered by hydrogen. This shows that Mercedes-Benz was already striving towards zero-emissions mobility thirty years ago

No comments:

Post a Comment